Concept Hierarchy Memory Model: a Neural Architecture for Conceptual Knowledge Representation, Learning, and Commonsense Reasoning
نویسندگان
چکیده
This article introduces a neural network based cognitive architecture termed Concept Hierarchy Memory Model (CHMM) for conceptual knowledge representation and commonsense reasoning. CHMM is composed of two subnetworks: a Concept Formation Network (CFN), that acquires concepts based on their sensory representations; and a Concept Hierarchy Network (CHN), that encodes hierarchical relationships between concepts. Based on Adaptive Resonance Associative Map (ARAM), a supervised Adaptive Resonance Theory (ART) model, CHMM provides a systematic treatment for concept formation and organization of a concept hierarchy. Specifically, a concept can be learned by sampling activities across multiple sensory fields. By chunking relations between concepts as cognitive codes, a concept hierarchy can be learned/modified through experience. Also, fuzzy relations between concepts can now be represented in terms of the weights on the links connecting them. Using a unified inferencing mechanism based on code firing, CHMM performs an important class of commonsense reasoning, including concept recognition and property inheritance.
منابع مشابه
A novel model of clinical reasoning: Cognitive zipper model
Introduction: Clinical reasoning is a vital aspect of physiciancompetence. It has been the subject of academic research fordecades, and various models of clinical reasoning have beenproposed. The aim of the present study was to develop a theoreticalmodel of clinical reasoning.Methods: To conduct our study, we applied the process of theorysynthesis in accordan...
متن کاملSenticNet 5: Discovering Conceptual Primitives for Sentiment Analysis by Means of Context Embeddings
With the recent development of deep learning, research in AI has gained new vigor and prominence. While machine learning has succeeded in revitalizing many research fields, such as computer vision, speech recognition, and medical diagnosis, we are yet to witness impressive progress in natural language understanding. One of the reasons behind this unmatched expectation is that, while a bottom-up...
متن کاملMachine Learning methods and applications using Formal Concept Analysis
Machine learning (ML) deals with algorithms that automatically improve with experience where the experience for a ML algorithm is huge repositories of data. Machine learning methods produce a program that fits data to a model from lots of examples that specify the correct output for a given input. Formal Concept Analysis (FCA) is a successful model of learning from positive and negative example...
متن کاملEthnomethodology and Conversational Analysis
In a speech community, people utilize their communicative competence which they have acquired from their society as part of their distinctive sociolinguistic identity. They negotiate and share meanings, because they have commonsense knowledge about the world, and have universal practical reasoning. Their commonsense knowledge is embodied in their language. Thus, not only does social life depend...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International journal of neural systems
دوره 7 3 شماره
صفحات -
تاریخ انتشار 1996